Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Coatings ; 12(8):1092, 2022.
Article in English | ProQuest Central | ID: covidwho-2023230

ABSTRACT

Unlike the term sound insulation, which means reducing the penetration of noise into other areas, sound absorption means reducing the reflection and energy of the sound on the surface. It has become a highly noticed issue in recent years because the noise in our daily life is increasing day by day, and it causes some health and comfort disorders. In many areas, textiles have been used for acoustics control and noise absorption purposes. The purpose of this work is to determine the most effective media for sound absorption performance and its relation to thermal conductivity from needle-punched nonwoven, meltblown nonwoven and hybrid forms in different arrangements of these fabrics. To provide comparable samples, both needle-punched nonwoven and meltblown nonwoven samples were produced from 100% Polypropylene fibres. According to sound absorption tests, the hybrid-structured sample having a composition similar to the needle-punched nonwoven sample placed at the bottom of our study, while the meltblown nonwoven sample placed as a face layer outperformed the rest of the samples in terms of sound absorption and thermal conductivity. ‘Meltblown only’ samples had remarkably higher sound absorption efficiency than most of the samples, while the ‘needle-punched nonwoven only’ sample had the lowest sound absorption efficiency in all frequencies.

2.
Buildings ; 12(3):321, 2022.
Article in English | ProQuest Central | ID: covidwho-1760393

ABSTRACT

The building sector continues to play an essential role in reducing worldwide energy consumption. The reduced consumption is accompanied by stricter regulation for the thermotechnical design of the building envelope. The redefined nearly Zero Energy Building levels that will come into force for each member state will pressure designers to rethink the constructive details so that mandatory levels can be reached, without increasing the construction costs over an optimum level but at the same time reducing greenhouse gas emissions. The paper aims to illustrate the main conclusions obtained in assessing the thermo-energy performance of a steel-framed building representing a holistically designed modular laboratory located in a moderate continental temperate climate, characteristic of the south-eastern part of the Pannonian Depression with some sub-Mediterranean influences. An extensive numerical simulation of the main junctions was performed. The thermal performance was established in terms of the main parameters, the adjusted thermal resistances and global thermal insulation coefficient. Further on, the energy consumption for heating was established, and the associated energy rating was in compliance with the Romanian regulations. A parametric study was done to illustrate the energy performance of the investigated case in the five representative climatic zones from Romania. An important conclusion of the research indicates that an emphasis must be placed on the thermotechnical design of Light Steel Framed solutions against increased thermal bridge areas caused by the steel’s high thermal conductivity for all building components to reach nZEB levels. Nevertheless, the results indicate an exemplary behaviour compared to classical solutions, but at the same time, the need for an iterative redesign so that all thermo-energy performance indicators are achieved.

3.
Energies ; 15(5):1936, 2022.
Article in English | ProQuest Central | ID: covidwho-1736870

ABSTRACT

The climate crisis is one of the most important problems today. In the process of human building, the use of cement, steel, and other industrial materials in the process of building construction and recycling has brought a huge burden to the natural environment. Earth is one of the oldest building materials, its availability and insulation make it an excellent constructive solution in human history. Among several existing earth construction techniques, rammed earth is one of the most relevant. In this paper, a numerical model of the rammed earth folk house in Mianyang was established, and an experimental device was built to verify it. With the typical meteorological year data of Mianyang in northwest Sichuan, the heat and moisture transfer in rammed earth wall, as well as the indoor thermal and moisture environment were numerically simulated. The results show that the rammed earth wall weakens the temperature fluctuation of the inner surface of the wall and makes the peak temperature of the inner surface of the wall lag the outer surface. The relative humidity in the center of the rammed earth wall can be maintained at about 60%, both in winter and summer. The moisture absorption and desorption capacity of rammed earth walls without inner decorative materials is about three times that of gypsum board, and the use of a waterproof coating will render the rammed earth wall almost unable to adjust the indoor relative humidity. Additionally, the use of decorative materials will increase the fluctuation range of indoor relative humidity and the risk of mold breeding.

SELECTION OF CITATIONS
SEARCH DETAIL